Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.

Identifieur interne : 000323 ( Main/Exploration ); précédent : 000322; suivant : 000324

A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.

Auteurs : Iga Tomczynska [Suisse] ; Michael Stumpe [Suisse] ; Tu Giang Doan [Suisse] ; Felix Mauch [Suisse]

Source :

RBID : pubmed:32396661

Abstract

Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.

DOI: 10.1111/nph.16653
PubMed: 32396661


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.</title>
<author>
<name sortKey="Tomczynska, Iga" sort="Tomczynska, Iga" uniqKey="Tomczynska I" first="Iga" last="Tomczynska">Iga Tomczynska</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stumpe, Michael" sort="Stumpe, Michael" uniqKey="Stumpe M" first="Michael" last="Stumpe">Michael Stumpe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doan, Tu Giang" sort="Doan, Tu Giang" uniqKey="Doan T" first="Tu Giang" last="Doan">Tu Giang Doan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mauch, Felix" sort="Mauch, Felix" uniqKey="Mauch F" first="Felix" last="Mauch">Felix Mauch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32396661</idno>
<idno type="pmid">32396661</idno>
<idno type="doi">10.1111/nph.16653</idno>
<idno type="wicri:Area/Main/Corpus">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000194</idno>
<idno type="wicri:Area/Main/Curation">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000194</idno>
<idno type="wicri:Area/Main/Exploration">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.</title>
<author>
<name sortKey="Tomczynska, Iga" sort="Tomczynska, Iga" uniqKey="Tomczynska I" first="Iga" last="Tomczynska">Iga Tomczynska</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stumpe, Michael" sort="Stumpe, Michael" uniqKey="Stumpe M" first="Michael" last="Stumpe">Michael Stumpe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doan, Tu Giang" sort="Doan, Tu Giang" uniqKey="Doan T" first="Tu Giang" last="Doan">Tu Giang Doan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mauch, Felix" sort="Mauch, Felix" uniqKey="Mauch F" first="Felix" last="Mauch">Felix Mauch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32396661</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.</ArticleTitle>
<Pagination>
<MedlinePgn>1467-1478</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16653</ELocationID>
<Abstract>
<AbstractText>Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tomczynska</LastName>
<ForeName>Iga</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0002-3413-5670</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stumpe</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doan</LastName>
<ForeName>Tu Giang</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mauch</LastName>
<ForeName>Felix</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0001-5150-2711</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Nicotiana benthamiana </Keyword>
<Keyword MajorTopicYN="Y">Phytophthora </Keyword>
<Keyword MajorTopicYN="Y">Arabidopsis</Keyword>
<Keyword MajorTopicYN="Y">RxLR effector</Keyword>
<Keyword MajorTopicYN="Y">callose</Keyword>
<Keyword MajorTopicYN="Y">callose synthase</Keyword>
<Keyword MajorTopicYN="Y">plant immunity</Keyword>
<Keyword MajorTopicYN="Y">plasmodesmata</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32396661</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16653</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Amsbury S, Kirk P, Benitez-Alfonso Y. 2017. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. Journal of Experimental Botany 69: 105-115.</Citation>
</Reference>
<Reference>
<Citation>Anderson RG, Deb D, Fedkenheuer K, McDowell JM. 2015. Recent progress in RXLR effector research. Molecular Plant-Microbe Interactions 28: 1063-1072.</Citation>
</Reference>
<Reference>
<Citation>Aung K, Kim P, Li Z, Joe A, Kvitko BH, Alfano JR, He SY. 2019. Pathogenic bacteria target plant plasmodesmata to colonize and invade surrounding tissues. Plant Cell 32: 595-611.</Citation>
</Reference>
<Reference>
<Citation>Bayer EMF, Salmon MS. 2013. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics. Frontiers in Plant Science 3: 307.</Citation>
</Reference>
<Reference>
<Citation>Benhamou N, Côté F. 1992. Ultrastructure and cytochemistry of pectin and cellulose degradation in tobacco roots infected by Phytophthora parasitica var. nicotianae. Phytopathology 82: 468-478.</Citation>
</Reference>
<Reference>
<Citation>Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A. 2013. Symplastic intercellular connectivity regulates lateral root patterning. Developmental Cell 26: 136-147.</Citation>
</Reference>
<Reference>
<Citation>Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ. 2010. Plasmodesmata: gateways to local and systemic virus infection. Molecular Plant-Microbe Interactions 23: 1403-1412.</Citation>
</Reference>
<Reference>
<Citation>Burch-Smith TM, Zambryski PC. 2010. Loss of INCREASED SIZE EXCLUSION LIMIT (ISE) 1 or ISE2 increases the formation of secondary plasmodesmata. Current Biology 20: 989-993.</Citation>
</Reference>
<Reference>
<Citation>Cao L, Blekemolen MC, Tintor N, Cornelissen BJ, Takken FL. 2018. The Fusarium oxysporum Avr2-Six5 effector pair alters plasmodesmatal exclusion selectivity to facilitate cell-to-cell movement of Avr2. Molecular Plant 11: 691-705.</Citation>
</Reference>
<Reference>
<Citation>Carella P, Isaacs M, Cameron R. 2015. Plasmodesmata-located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long-distance movement of defective in induced resistance1 in Arabidopsis. Plant Biology 17: 395-401.</Citation>
</Reference>
<Reference>
<Citation>Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JI, Schornack S, Jones AM, Bozkurt TO, Kamoun S. 2015. Phytophthora infestans RXLR-WY effector AVR3a associates with dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2. PLoS ONE 10: e0137071.</Citation>
</Reference>
<Reference>
<Citation>Chen X-Y, Kim J-Y. 2009. Callose synthesis in higher plants. Plant Signaling & Behavior 4: 489-492.</Citation>
</Reference>
<Reference>
<Citation>Cheval C, Faulkner C. 2018. Plasmodesmal regulation during plant-pathogen interactions. New Phytologist 217: 62-67.</Citation>
</Reference>
<Reference>
<Citation>Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.</Citation>
</Reference>
<Reference>
<Citation>Cui W, Lee J-Y. 2016. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants 2: 16034.</Citation>
</Reference>
<Reference>
<Citation>Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J et al. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5: e10856.</Citation>
</Reference>
<Reference>
<Citation>De Storme N, Geelen D. 2014. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Frontiers in Plant Science 5: 138.</Citation>
</Reference>
<Reference>
<Citation>Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I. 2011. Metabolic priming by a secreted fungal effector. Nature 478: 395.</Citation>
</Reference>
<Reference>
<Citation>Dong X, Hong Z, Chatterjee J, Kim S, Verma DPS. 2008. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta 229: 87-98.</Citation>
</Reference>
<Reference>
<Citation>Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. 2005. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal 42: 315-328.</Citation>
</Reference>
<Reference>
<Citation>Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F. 2015. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiology 169: 1975-1990.</Citation>
</Reference>
<Reference>
<Citation>Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W. 2018. A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulum-mediated immunity. Molecular Plant 11: 1067-1083.</Citation>
</Reference>
<Reference>
<Citation>Faulkner C, Maule A. 2011. Opportunities and successes in the search for plasmodesmal proteins. Protoplasma 248: 27-38.</Citation>
</Reference>
<Reference>
<Citation>Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proceedings of the National Academy of Sciences, USA 110: 9166-9170.</Citation>
</Reference>
<Reference>
<Citation>Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A. 2011. Arabidopsis plasmodesmal proteome. PLoS ONE 6: e18880.</Citation>
</Reference>
<Reference>
<Citation>Gaudioso-Pedraza R, Benitez-Alfonso Y. 2014. A phylogenetic approach to study the origin and evolution of plasmodesmata-localized glycosyl hydrolases family 17. Frontiers in Plant Science 5: 212.</Citation>
</Reference>
<Reference>
<Citation>Germain H, Joly DL, Mireault C, Plourde MB, Letanneur C, Stewart D, Morency MJ, Petre B, Duplessis S, Séguin A. 2018. Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens. Molecular Plant Pathology 19: 191-200.</Citation>
</Reference>
<Reference>
<Citation>Giesbrecht MB, Hansen EM, Kitin P. 2011. Histology of Phytophthora ramorum in Notholithocarpus densiflorus bark tissues. New Zealand Journal of Forestry Science 41: 89-100.</Citation>
</Reference>
<Reference>
<Citation>Giraldo MC, Valent B. 2013. Filamentous plant pathogen effectors in action. Nature Reviews Microbiology 11: 800-814.</Citation>
</Reference>
<Reference>
<Citation>Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V. 2015. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27: 1228-1250.</Citation>
</Reference>
<Reference>
<Citation>Gunning BE, Robards A. 1976. Intercellular communication in plants: studies on plasmodesmata. Berlin, Germany: Springer-Verlag.</Citation>
</Reference>
<Reference>
<Citation>Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii KU. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137: 1731-1741.</Citation>
</Reference>
<Reference>
<Citation>Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461: 393-398.</Citation>
</Reference>
<Reference>
<Citation>Han X, Hyun TK, Zhang M, Kumar R, Koh E-j, Kang B-H, Lucas WJ, Kim J-Y. 2014. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Developmental Cell 28: 132-146.</Citation>
</Reference>
<Reference>
<Citation>Hong Z, Delauney AJ, Verma DPS. 2001. A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13: 755-768.</Citation>
</Reference>
<Reference>
<Citation>Huang J, Gu L, Zhang Y, Yan T, Kong G, Kong L, Guo B, Qiu M, Wang Y, Jing M. 2017. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications 8: 2051.</Citation>
</Reference>
<Reference>
<Citation>Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W. 2016. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins. Nature Communications 7: 1-17.</Citation>
</Reference>
<Reference>
<Citation>Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T. 2010. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142: 284-295.</Citation>
</Reference>
<Reference>
<Citation>Kankanala P, Czymmek K, Valent B. 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19: 706-724.</Citation>
</Reference>
<Reference>
<Citation>Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y, Czymmek K, Kang S, Valent B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22: 1388-1403.</Citation>
</Reference>
<Reference>
<Citation>King SR, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PR, Banfield MJ. 2014. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling. Plant Cell 26: 1345-1359.</Citation>
</Reference>
<Reference>
<Citation>Kong L, Qiu X, Kang J, Wang Y, Chen H, Huang J, Qiu M, Zhao Y, Kong G, Ma Z. 2017. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Current Biology 27: 981-991.</Citation>
</Reference>
<Reference>
<Citation>Lee C-W, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R. 2009. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21: 2948-2962.</Citation>
</Reference>
<Reference>
<Citation>Lee J-Y, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23: 3353-3373.</Citation>
</Reference>
<Reference>
<Citation>Lim G-H, Shine M, de Lorenzo L, Yu K, Cui W, Navarre D, Hunt AG, Lee J-Y, Kachroo A, Kachroo P. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host & Microbe 19: 541-549.</Citation>
</Reference>
<Reference>
<Citation>Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270: 1980-1983.</Citation>
</Reference>
<Reference>
<Citation>Murphy F, He Q, Armstrong M, Giuliani LM, Boevink PC, Zhang W, Tian Z, Birch PR, Gilroy EM. 2018. Potato MAP3K StVIK is required for Phytophthora infestans RXLR Effector Pi17316 to promote disease. Plant Physiology 177: 398-410.</Citation>
</Reference>
<Reference>
<Citation>Nakajima K, Sena G, Nawy T, Benfey PN. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413: 307.</Citation>
</Reference>
<Reference>
<Citation>Nedukha O. 2015. Callose: localization, functions, and synthesis in plant cells. Cytology and Genetics 49: 49-57.</Citation>
</Reference>
<Reference>
<Citation>Oparka KJ. 2004. Getting the message across: how do plant cells exchange macromolecular complexes? Trends in Plant Science 9: 33-41.</Citation>
</Reference>
<Reference>
<Citation>Petre B, Kopischke M, Evrard A, Robatzek S, Kamoun S. 2016. Cell re-entry assays do not support models of pathogen-independent translocation of AvrM and AVR3a effectors into plant cells. BioRxiv 038232.</Citation>
</Reference>
<Reference>
<Citation>Qiao Y, Shi J, Zhai Y, Hou Y, Ma W. 2015. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences, USA 112: 5850-5855.</Citation>
</Reference>
<Reference>
<Citation>Radford J, Vesk M, Overall R. 1998. Callose deposition at plasmodesmata. Protoplasma 201: 30-37.</Citation>
</Reference>
<Reference>
<Citation>Reagan BC, Ganusov EE, Fernandez JC, McCray TN, Burch-Smith TM. 2018. RNA on the move: the plasmodesmata perspective. Plant Science 275: 1-10.</Citation>
</Reference>
<Reference>
<Citation>Roberts A, Oparka K. 2003. Plasmodesmata and the control of symplastic transport. Plant, Cell & Environment 26: 103-124.</Citation>
</Reference>
<Reference>
<Citation>Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B. 2001. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. The Plant Journal 28: 293-305.</Citation>
</Reference>
<Reference>
<Citation>Sager R, Lee J-Y. 2014. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. Journal of Experimental Botany 65: 6337-6358.</Citation>
</Reference>
<Reference>
<Citation>Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F. 2010. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. The Plant Journal 62: 840-851.</Citation>
</Reference>
<Reference>
<Citation>Schütze K, Harter K, Chaban C. 2009. Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. In: Pfannschmidt T, ed. Plant signal transduction. Methods in molecular biology, vol. 479. Totowa, NJ, USA: Humana Press, 189-202.</Citation>
</Reference>
<Reference>
<Citation>Sevilem I, Miyashima S, Helariutta Y. 2013. Cell-to-cell communication via plasmodesmata in vascular plants. Cell Adhesion & Migration 7: 27-32.</Citation>
</Reference>
<Reference>
<Citation>Sevilem I, Yadav SR, Helariutta Y. 2015. Plasmodesmata: channels for intercellular signaling during plant growth and development. In: Heinlein M, ed. Plasmodesmata: methods and protocols. New York, NY, USA: Humana Press, 3-24.</Citation>
</Reference>
<Reference>
<Citation>Shimada TL, Shimada T, Hara-Nishimura I. 2010. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. The Plant Journal 61: 519-528.</Citation>
</Reference>
<Reference>
<Citation>Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P. 2009. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proceedings of the National Academy of Sciences, USA 106: 17229-17234.</Citation>
</Reference>
<Reference>
<Citation>Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ. 2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biology 6: e7.</Citation>
</Reference>
<Reference>
<Citation>Tomczynska I, Stumpe M, Mauch F. 2018. A conserved Rx LR effector interacts with host RABA-type GTP ases to inhibit vesicle-mediated secretion of antimicrobial proteins. The Plant Journal 95: 187-203.</Citation>
</Reference>
<Reference>
<Citation>Tyler BM. 2009. Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cellular Microbiology 11: 13-20.</Citation>
</Reference>
<Reference>
<Citation>Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM. 2013. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions 26: 611-616.</Citation>
</Reference>
<Reference>
<Citation>Vatén A, Dettmer J, Wu S, Stierhof Y-D, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell 21: 1144-1155.</Citation>
</Reference>
<Reference>
<Citation>Verma DPS, Hong Z. 2001. Plant callose synthase complexes. Plant Molecular Biology 47: 693-701.</Citation>
</Reference>
<Reference>
<Citation>Wang X, Sager R, Cui W, Zhang C, Lu H, Lee J-Y. 2013. Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25: 2315-2329.</Citation>
</Reference>
<Reference>
<Citation>Wawra S, Trusch F, Matena A, Apostolakis K, Linne U, Zhukov I, Stanek J, Koźmiński W, Davidson I, Secombes CJ. 2017. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion. Plant Cell 29: 1184-1195.</Citation>
</Reference>
<Reference>
<Citation>Whisson SC, Avrova AO, Boevink PC, Armstrong MR, Seman ZA, Hein I, Birch PRJ. 2011. Exploiting knowledge of pathogen effectors to enhance late blight resistance in potato. Potato Research 54: 325-340.</Citation>
</Reference>
<Reference>
<Citation>Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, Van West P, Chapman S. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115.</Citation>
</Reference>
<Reference>
<Citation>Xie B, Hong Z. 2011. Unplugging the callose plug from sieve pores. Plant Signaling & Behavior 6: 491-493.</Citation>
</Reference>
<Reference>
<Citation>Yan D, Yadav SR, Paterlini A, Nicolas WJ, Petit JD, Brocard L, Belevich I, Grison MS, Vaten A, Karami L et al. 2019. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nature Plants 5: 604-615.</Citation>
</Reference>
<Reference>
<Citation>Yu Y, Jiao L, Fu S, Yin L, Zhang Y, Lu J. 2016. Callose synthase family genes involved in the grapevine defense response to downy mildew disease. Phytopathology 106: 56-64.</Citation>
</Reference>
<Reference>
<Citation>Zambryski P. 2004. Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. Journal of Cell Biology 164: 165-168.</Citation>
</Reference>
<Reference>
<Citation>Zavaliev R, Epel BL. 2015. Imaging callose at plasmodesmata using aniline blue: quantitative confocal microscopy. In: Heinlein M, ed. Plasmodesmata: Methods and Protocols. New York, NY, USA: Springer, 105-119.</Citation>
</Reference>
<Reference>
<Citation>Zavaliev R, Ueki S, Epel BL, Citovsky V. 2011. Biology of callose (β-1, 3-glucan) turnover at plasmodesmata. Protoplasma 248: 117-130.</Citation>
</Reference>
<Reference>
<Citation>Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC, Gilroy EM, Chen Y, Kandel K, Sessa G, Birch PR et al. 2014. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathogens 10: e1004057.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
</region>
<settlement>
<li>Fribourg</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Tomczynska, Iga" sort="Tomczynska, Iga" uniqKey="Tomczynska I" first="Iga" last="Tomczynska">Iga Tomczynska</name>
</region>
<name sortKey="Doan, Tu Giang" sort="Doan, Tu Giang" uniqKey="Doan T" first="Tu Giang" last="Doan">Tu Giang Doan</name>
<name sortKey="Mauch, Felix" sort="Mauch, Felix" uniqKey="Mauch F" first="Felix" last="Mauch">Felix Mauch</name>
<name sortKey="Stumpe, Michael" sort="Stumpe, Michael" uniqKey="Stumpe M" first="Michael" last="Stumpe">Michael Stumpe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000323 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000323 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32396661
   |texte=   A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32396661" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024